
TPA Stream Developer Documentation

Jun 28, 2022

Contents

1 Guide 3
1.1 Getting Started . 3

1.1.1 Connecting the Health Insurance API to your Application 3
1.1.2 Retrieving Claim Data . 3

1.2 TPA Stream Connect . 3
1.2.1 Client Library . 3
1.2.2 Webhooks . 6

1.3 REST API . 11
1.3.1 Authentication . 11
1.3.2 Security . 12
1.3.3 Generating an SSH Key . 12
1.3.4 Generating a GPG Key . 12
1.3.5 API Response Format . 13
1.3.6 API Errors . 13
1.3.7 A note about Date Ranges . 14
1.3.8 Filtering and Paging Through Results . 14

2 Indices and tables 19

i

ii

TPA Stream Developer Documentation

Welcome to TPA Stream! Here you’ll find comprehensive information for linking your application with the TPA
Stream API, allowing you to focus on building your product, not integrating with ours. If you’re planning to use our
API in Production, please review our Privacy Policy.

TPA Stream’s developer tools consist of a JavaScript SDK Client Library to embed consumer enrollment into your
web or mobile application, Webhooks to provide your application with realtime Claim updates, and a REST API for
getting the most up-to-date information.

Contents 1

https://app.tpastream.com/privacy

TPA Stream Developer Documentation

2 Contents

CHAPTER 1

Guide

1.1 Getting Started

1.1.1 Connecting the Health Insurance API to your Application

In order to get Claim data into your application, a participant must first connect their Health Insurance account with
your application using TPA Stream’s API. The easiest way to accomplish this is by using our Connect Client Library.

Our Client Library is highly configurable and meant to be built directly into your application. Once embedded into
your application, the client will allow the participant to select an Insurance Carrier from our list, enter their credentials,
and verify them in realtime. Once they are connected, we will start receiving their Claim data asynchronously.

1.1.2 Retrieving Claim Data

Typically we begin receiving a participants claims within a minute or so after they connect their account using our
Client Library. It can take anywhere from several minutes to several hours for us to receive all their claims, which are
usually ordered by newest claims first.

There are several ways for you to get Claim Data into your application. If you want them as soon as possible, the
quickest way to get them is by implementing our Connect Claim Webhook. You can also pull claims on demand using
our REST API. Additionally, we can setup a daily CSV file feed to send all new claims via sFTP, FTPS, or to an S3
bucket. Contact sales@tpastream.com to learn more.

1.2 TPA Stream Connect

1.2.1 Client Library

3

mailto:sales@tpastream.com

TPA Stream Developer Documentation

Usage

Our JavaScript Client Library is designed to allow users of your Web or Mobile application to connect their Health
Insurance accounts with your Application.

To get up and running, you can simply copy and paste the JavaScript snippets below, and run it in isDemo mode today.
You can use the provided callbacks to customize the look, feel, and overall experience for your users.

Detailed Client-Usage Docs

We highly suggest taking a look at our Detailed Client-Usage Docs on github while attempting to implement the SDK.

Other Useful Documentation Links

Quickstart

FAQ

Error Documentation

SDK Flow

JavaScript Client

Source Code

You can find the source code to our JavaScript Client here: https://github.com/TPAStream/stream-connect-js-sdk

NPM Example (recommended)

npm i stream-connect-sdk

import StreamConnect from 'stream-connect-sdk';

const sdk = StreamConnect({
el: '#react-hook',
isDemo: true

});

CDN Example

<script src="https://app.tpastream.com/static/js/sdk.js"></script>
<script>

window.StreamConnect({
el: '#react-hook',
tenant: {

systemKey: 'test',
vendor: 'internal'

},
employer: {

systemKey: 'some-system-key',
vendor: 'internal',

(continues on next page)

4 Chapter 1. Guide

https://github.com/TPAStream/stream-connect-js-sdk
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/client-usage.md#client-usage
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/quickstart.md
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/faq.md
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/error.md
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/sdk-flow.md
https://github.com/TPAStream/stream-connect-js-sdk

TPA Stream Developer Documentation

(continued from previous page)

name: 'some-name'
},
user: {

firstName: 'Joe',
lastName: 'Sajor',
email: 'some-email@place.com',
memberSystemKey: 'some-system-key',
phoneNumber: '333333333',
dateOfBirth: '11-11-1121'

},
apiToken: 'Some Provided Key → 21poi34kjqf21j1poi1d2po', // We'll provide

→˓this.
isDemo: false,
realTimeVerification: true,
renderChoosePayer: true,
doneGetSDK: ({ user, payers, tenant, employer }) => {},
doneChoosePayer: ({ choosePayer, streamPayers }) => {},
doneTermsOfService: () => {},
doneCreatedForm: () => {},
donePostCredentials: ({ params }) => {},
doneRealTime: () => {},
donePopUp: () => {},
doneEasyEnroll: ({ employer, payer, tenant, policyHolder, user }) => {},
handleFormErrors: (error, {response, request, config}) => {},
userSchema: {}

})
</script>

As of SDK version 0.4.7 the CDN provider is now versioned and will support up to 10 minor versions behind.

• Importing the various versions of the SDK is handled in src attribute on your script tag

– “https://app.tpastream.com/static/js/sdk.js” –> Grabs the latest version of the SDK

– “https://app.tpastream.com/static/js/sdk-v-<VersionNumber>.js” –> For a specific version. Examples below.

* “https://app.tpastream.com/static/js/sdk-v-0.4.7.js”

SDK Client Usage Docs

We highly suggest taking a look at our Detailed Client-Usage Docs on github while attempting to implement the SDK.

There you will find explanations for all of the various callbacks in the example above as well as explanations for the
various configuration paramters.

Android Example

In Android, you can implement the JavaScript SDK by creating an html file in your assets folder that loads the SDK,
then loading it in a WebView. Here’s a simple example implementation in Java.

public class ViewWeb extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.content);

(continues on next page)

1.2. TPA Stream Connect 5

https://app.tpastream.com/static/js/sdk.js
https://app.tpastream.com/static/js/sdk-v
https://app.tpastream.com/static/js/sdk-v-0.4.7.js
https://github.com/TPAStream/stream-connect-js-sdk/blob/master/docs/client-usage.md#client-usage

TPA Stream Developer Documentation

(continued from previous page)

WebView webview = (WebView) findViewById(R.id.webView);
webview.loadUrl("file:///android_asset/stream-connect.html");

}
}

iOS Example

In iOS, you can implement the JavaScript SDK by creating a directory in your project (“stream-connect” in the below
example), and putting an html file in it (index.html in the below example) that loads the SDK. You can then load it
into a WKWebView. Here’s a simple example implementation in Objective-C.

import UIKit
import WebKit

class ViewController: UIViewController, WKUIDelegate, WKNavigationDelegate {

@IBOutlet weak var webView: WKWebView!
override func viewDidLoad() {

super.viewDidLoad()
webView.uiDelegate = self
webView.navigationDelegate = self
let url = Bundle.main.url(forResource: "index", withExtension: "html",

→˓subdirectory: "stream-connect")!
webView.loadFileURL(url, allowingReadAccessTo: url)
let request = URLRequest(url: url)
webView.load(request)

}
}

Change Log

v0.4.8 (Latest)

• Add individual endpoints for the following: payer and terms of service

• Seperate the versions of the api and create a version manager.

• Drastically improve initial endpoint loadtime by bringing down less info.

v0.4.7

• Add versioning to the CDN provider

• Append version to all request headers for underlying api to read.

1.2.2 Webhooks

Claim Webhook

TPA Stream offers a claim webhook feature in which TPA Stream will post new claims to a customer-provided end-
point.

6 Chapter 1. Guide

TPA Stream Developer Documentation

Trigger

The claim webhook will fire whenever a new claim is processed in TPA Stream.

Claim Webhook URL

To edit the claim webhook URL, click on “Account Settings” on the settings page.

Note that you will only see this setting if the claim webhook feature is enabled.

Once the webhook URL has been updated, all future posts will go to that URL.

Replaying a Claim Post

To manually replay a claim post, find the appropriate claim on the claims page and click the “Replay webhook” button.
If the button is not shown, please verify that the webhook feature is enabled and a URL is set as described above. This
“replay” functionality is useful for testing, and can also be used to trigger a webhook for any pre-existing claims that
are in the system, if desired.

1.2. TPA Stream Connect 7

TPA Stream Developer Documentation

First Crawl Completion Webhook

TPA Stream also offers a crawl webhook feature that posts details about the first crawl of a policyholder to a customer-
provided endpoint.

Trigger

The first crawl completion webhook will fire after all the claims for the first crawl of a policyholder have been pro-
cessed. If this crawl is successful, that will be the last time the webhook fires for the policyholder. If the crawl fails, the
trigger will fire again on the next crawl. This will occur until a crawl has successfully completed for the policyholder.
For example, if the first two crawls fail and the next two ones succeed, 3 POST requests will be made. Two for the
failures and a third, final POST for the first success.

Note if you create a new member and associate it with an existing carrier login, the system will not fire the webhook if
that existing carrier login has already had a successful first crawl. Even though the member is new, the system reuses
the existing carrier login (policyholder).

First Crawl Completion Webhook URL

To edit the first crawl completion webhook URL, click on “Account Settings” on the settings page similar to editing
the claim webhook URL.

Replaying a Crawl Completion Post

To manually replay a first completion webhook post, find the appropriate member on the member page. Under policy
holders, there will be a button to replay the webhook request. If the button is not shown, please verify that the webhook
feature is enabled and a URL is set as described above. This “replay” functionality is useful for testing. If a crawl for
that policy holder has not happened yet, it will return a failure. Note that the replay will not have crawl_claim_ids
and will not be retried upon failure.

Request Retries

The request will be an HTTP POST with Content-Type header of application/json. An example of the JSON you can
expect can be found at the end of this document. For Webhook POSTs, TPA Stream listens for the following codes
from your server and reacts accordingly:

8 Chapter 1. Guide

TPA Stream Developer Documentation

• If TPA Stream receives a 200 or 2xx (Success) code it will determine the webhook POST is successful and not
retry.

• If TPA Stream receives a 406 (Not Acceptable) code, TPA Stream will determine the POST is rejected and not
retry.

• For any other code, TPA Stream will retry POSTing with an exponential backoff delay for up to 4 hours.

Security

TPAStream-Signature Verification

Also included in the request is a JWT signature that can be used to verify that the request has originated from TPA
Stream, and not any other party. This header is passed in the TPAStream-Signature header of the request. The signature
can be verified using our SSH RSA public key. The key can be obtained from https://app.tpastream.com/keys. The
JWT hashing algorithm used is RS256.

We strongly recommend that you verify our JWT signature as a part of your webhook. Examples of how to decode a
JWT in several common programming languages can be found at https://jwt.io. Note that the JWT library you choose
must support RS256 (nearly all of them do), and should also support an exp check (although you could easily perform
this simple expiration date check yourself using a UTC timestamp).

Example Claim Webhook JSON Request

{
"data": {

"service_provider_billing_npi_number": null,
"computed_coinsurance_patient": null,
"group_name": null,
"members": [{

"id": 99999999,
"email": "johnny@appleseed.com",
"first_name": "Johnny",
"last_name": "Appleseed",
"employer": {

"id": 999,
"name": "Dunder Mifflin"

}
}],
"group_number": null,
"eob_date": "2017-07-01T16:51:16.701956",
"date_column": "2017-07-01T16:51:16.701956+00:00",
"service_provider_number": "laMhYxXFh",
"service_provider_billing_number": null,
"coinsurance_patient": null,
"modifieddate": "2017-06-01T04:14:29.348875+00:00",
"service_provider_billing_address": null,
"status": "Partially Approved",
"amount_billed": 228,
"reduction": null,
"claim_medical_lines": [{

"claim_medical_line_id": 10004,
"procedure_code": "87254 - VIRUS INOCULATION SHELL VIA",
"days_supply": null,
"copayment": null,

(continues on next page)

1.2. TPA Stream Connect 9

https://app.tpastream.com/keys
https://jwt.io

TPA Stream Developer Documentation

(continued from previous page)

"date_of_service": {
"bounds": "[]",
"start": "2020-01-16",
"end": "2020-01-17"
},
"vendor_system_id": "2b7e0936",
"discount": null,
"coinsurance_patient": null,
"amount_allowed": null,
"national_drug_code": null,
"prescription_type_id": null,
"patient_responsibility": 0,
"procedure_name": "Preventive Visit-Ages 18-39 - see note E23",
"prescription_type_str": null,
"amount_billed": 228,
"reduction": null,
"amount_paid": null,
"amount_not_covered": null,
"diagnosis_code": "M19.172",
"quantity": null,
"amount_paid_other": null

}],
"amount_paid_other": null,
"computed_reduction": null,
"vendor_system_id": "28284fbbaa164d02",
"discount": null,
"computed_amount_billed": null,
"service_provider_npi_number": null,
"patient_responsibility": 0,
"dataobject_id": 104,
"remarks": "leverage ubiquitous users",
"service_provider_billing_name": null,
"network": null,
"amount_not_covered": null,
"copayment": null,
"computed_copayment": null,
"policy_holder": {

"id": 104,
"first_name": "Parrish",
"last_name": "Appleseed"

},
"patient_account_number": null,
"tpafiles": [],
"date_of_service": {

"bounds": "[]",
"start": "2020-01-28",
"end": "2020-01-28"

},
"incurred_value": null,
"is_incomplete": null,
"id": 10004,
"type": null,
"amount_allowed": null,
"service_provider_address": "1097 Dicha Garden",
"claim_requests": [],
"computed_amount_paid": null,
"check_number": "8858906",

(continues on next page)

10 Chapter 1. Guide

TPA Stream Developer Documentation

(continued from previous page)

"last_updated_status": "2020-02-11T13:56:45.249767+00:00",
"processed_on": "2017-06-21T00:30:46.791615",
"createddate": "2016-03-17T07:11:30.580677+00:00",
"computed_amount_allowed": null,
"dependents": [{

"id": 999,
"member_id": 9999,
"first_name": "Sally",
"last_name": "Appleseed",
"email": "sally@appleseed.com",
"ssn": "999999999",
"relationship": "spouse",
"createddate": "2017-07-01T16:51:16.701956",
"modifieddate": "2017-07-01T16:51:16.701956",

}],
"patient_payer_number": null,
"service_provider_billing_phone": null,
"claim_medical_id": 10004,
"check_date": "2020-01-24T23:49:50+00:00",
"computed_patient_responsibility": null,
"amount_paid": null,
"service_provider": "Salary.com",
"patient_name": "Abram",
"policy_holder_id": 104

}
}

Example Crawl Webhook JSON Request

{
"data": {

"members": [
{

"id": 63167
}

],
"policy_holder": {

"id": 189162,
"login_correction_message": "The login information you provided for

→˓Anthem is invalid. Please re-enter your login information.",
"login_problem": "invalid"

},
"success": false

}
}

1.3 REST API

1.3.1 Authentication

TPA Stream’s REST API supports Basic Authentication over HTTPS using your Secret API Key.

1.3. REST API 11

TPA Stream Developer Documentation

To implement, simply put your user name (email address) and Secret API key in the Authorization header on each API
request.

Your API key is a Secret Password! Do not share this key with anyone, including TPA Stream. TPA Stream will
NEVER ask for your Secret API Key.

A simple example using curl:

curl -L --user me@example.com:MY_API_KEY https://app.tpastream.com/api/claims

1.3.2 Security

For additional security, you must provide an IP CIDR address range. This range may be 0.0.0.0/0, meaning no
restriction, however we HIGHLY recommend a more restrictive address range to provide an extra layer of security in
addition to your Secret API Key. This range can be provided on the Manage Users page under Settings.

1.3.3 Generating an SSH Key

To generate an SSH keypair:

1. open your Terminal (on Linux/Mac) or Git Bash (Windows)

2. Paste the following command:

ssh-keygen

This creates a new SSH keypair.

1. When you’re prompted to “Enter a file in which to save the key,” press Enter. This accepts the default file
location.

Enter a file in which to save the key (/home/you/.ssh/
algorithm): [Press enter]

2. At the prompt, you may enter a secure passphrase. You can leave this blank.

Enter passphrase (empty for no passphrase): [Type a passphrase]

Enter same passphrase again: [Type passphrase again]

1.3.4 Generating a GPG Key

To generate a GPG keypair:

1. Download and install the GPG command line tools for your operating system. We generally recommend in-
stalling the latest version for your operating system.

2. Open Terminal.

3. Generate a GPG key pair.

gpg --full-generate-key

4. At the prompt, specify the kind of key you want, or press Enter to accept the default.

5. At the prompt, specify the key size you want, or press Enter to accept the default. Your key must be at least
4096 bits.

6. Enter the length of time the key should be valid. Press Enter to specify the default selection, indicating that the
key doesn’t expire.

12 Chapter 1. Guide

https://app.tpastream.com/settings/users
https://www.gnupg.org/download/

TPA Stream Developer Documentation

7. Verify that your selections are correct

8. Enter your user ID information. Note: When asked to enter your email address, ensure that you enter the
verified email address for your TPA Stream account.

9. Type a secure passphrase

10. Use the gpg –list-secret-keys –keyid-format=long command to list the long form of the GPG keys for which you
have both a public and private key.

11. From the list of GPG keys, copy the long form of the GPG key ID you’d like to use. In this example, the GPG
key ID is 3AA5C34371567BD2:

‘‘ $ gpg –list-secret-keys –keyid-format=long /Users/hubot/.gnupg/secring.gpg ———————————— sec
4096R/3AA5C34371567BD2 2016-03-10 [expires: 2017-03-10] uid Hubot ssb 4096R/42B317FD4BA89E7A 2016-
03-10 ‘‘

12. Paste the text below, substituting in the GPG key ID you’d like to use. In this example, the GPG key ID is
3AA5C34371567BD2

$ gpg --armor --export 3AA5C34371567BD2 # Prints the GPG key ID, in ASCII
armor format

13. Copy your GPG key, beginning with —–BEGIN PGP PUBLIC KEY BLOCK—– and ending with —–END PGP
PUBLIC KEY BLOCK—–

14. Add the GPG key to your TPA Stream account

1.3.5 API Response Format

Each API endpoint, upon success, will return an object with the entity (or entities) in the data key. If the endpoint is
paginated, it will also contain a number of other pagination related fields:

{
"data": [], // or {} for a single entity
"has_next": true,
"has_prev": false,
"next_num": 2,
"page": 1,
"pages": 123,
"per_page": 1000,
"prev_num": 0,
"total": 122901

}

1.3.6 API Errors

In the event that there is an error, our response will have a key of message. It may contain some other additional
information depending on the nature of the error. If the error is an unexpected error (and raises an exception in our
system), it will also contain an event_id. If you see an event_id, then our engineers are notified that there is an issue.

We make every effort to provide meaningful HTTP status codes and messages when there is an error. Please do not
hesitate to contact us regarding your usage of our API by emailing support@tpastream.com.

Error responses will look something like this:

1.3. REST API 13

mailto:support@tpastream.com

TPA Stream Developer Documentation

{
"message": "There was an error and hopefully this is useful info.",
"event_id": "xxxxxxxxxx"

}

1.3.7 A note about Date Ranges

Types of data that are date ranges are serialized to JSON as an object with bounds:

{
"bounds": "[)",
"end": "2016-09-16",
"start": "2016-09-15"

}

Note that since date of service can span over multiple days (for example, a hospital stay), it is stored as a range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower bound
is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive upper
bound is represented by “)”

—For more details and examples, please consult the PostgreSQL documentation
https://www.postgresql.org/docs/12/static/rangetypes.html#RANGETYPES-INCLUSIVITY

1.3.8 Filtering and Paging Through Results

Most API endpoints have enforced pagination. There are currently no globally defined upper limits to how much
can be requested per_page, but please try to maintain a healthy balance between number of requests and amount
of data requested via per_page with each request. When pulling large amounts of data, we recommend starting
with per_page=1000 and optimizing as necessary. Please contact support@tpastream.com if you intend to pull large
amounts of data, as we can help define a strategy or custom endpoint to better serve both your needs & ours.

Here are a list of endpoints. GET, PUT, POST, and DELETE are supported for most endpoints, however may or may
not be enabled for each type of user.

GET All Claims (starts with page 1. The response will tell you if there are more pages available)

/api/claims

GET All Employers

/api/employer

GET All Members

/api/member

GET All Policy Holders

/api/policy_holder

GET All Claims where Employer ID is 99999

/api/employer/99999/claims

GET All Claims where Policy Holder ID is 99999

14 Chapter 1. Guide

https://www.postgresql.org/docs/12/static/rangetypes.html#RANGETYPES-INCLUSIVITY
mailto:support@tpastream.com

TPA Stream Developer Documentation

/api/policy_holder/99999/claims

GET All Claims where Member ID is 99999

/api/member/99999/claims

GET Page 3 of Claims with 1000 Claims per page for Employer 999

/api/employer/999/claims?per_page=1000&page=3

GET Page 3 of Claims with 10 Claims per page for Employer 99. Do not include claims that are marked as
“Read”, and do not include claims before the Employer’s “Effective Date”

/api/employer/99/claims?per_page=10&page=3&hide_read=on&hide_before_effective_date=on

Claims Response

{
"data": [

{
"amount_allowed": null,
"amount_billed": 4509.00,
"amount_not_covered": null,
"amount_paid": 487.90,
"amount_paid_other": null,
"check_date": null,
"check_number": null,
"claim_medical_id": 9999999,
"claim_medical_lines": [
{

"amount_allowed": 69.11,
"amount_billed": 85.00,
"amount_not_covered": null,
"amount_paid": 0.00,
"amount_paid_other": null,
"claim_medical_line_id": 999999,
"coinsurance_patient": 0.00,
"copayment": 0.00,
"date_of_service": {

"bounds": "[)",
"end": "2016-10-26",
"start": "2016-10-25"

},
"diagnosis_code": null,
"discount": null,
"patient_responsibility": null,
"procedure_code": null,
"procedure_name": "Office/outpatient Visit, Est",
"reduction": 69.11,
"total_patient_responsibility": 69.11,
"vendor_system_id": "0"

}
],
"claim_requests": [],
"coinsurance_patient": 209.10,
"copayment": 0.00,
"createddate": "2017-05-28T06:47:16.361817-04:00",

(continues on next page)

1.3. REST API 15

TPA Stream Developer Documentation

(continued from previous page)

"dataobject_id": 9999,
"date_of_service": null,
"dependents": [
{

"alegeus_key": null,
"createddate": "2018-03-29T08:47:12.044480-04:00",
"datapath_key": null,
"email": null,
"first_name": "Johnny",
"generic_key": null,
"id": 99999,
"last_name": "Appleseed",
"modifieddate": "2018-03-29T08:47:12.044480-04:00",
"ssn": null,
"wex_key": null

}
],
"discount": null,
"eob_date": null,
"group_name": null,
"group_number": null,
"id": 476877,
"last_updated_status": "2017-05-28T06:47:16.361817-04:00",
"members": [
{

"email": "johnny@appleseed.com",
"employer_id": 99999,
"employer": {

"id": 99999,
"name": "Fruit Tree Planting Services, LLC",
"reimbursement_policy": "off"

},

"full_name": "Johnny Appleseed",
"id": 888888

}
],
"modifieddate": "2017-05-28T06:47:16.361817-04:00",
"network": null,
"patient_account_number": null,
"patient_name": "Jimmy Appleseed",
"patient_responsibility": 3959.10,
"policy_holder": {
"fullname": "Johnny Appleseed",
"policy_holder_id": 888888
},
"policy_holder_fullname": "Johnny Appleseed",
"policy_holder_id": 888888,
"processed_on": "2016-10-15",
"read": [],
"read_all": [],
"reduction": 0.00,
"remarks": null,
"service_provider": "Dr. Suess",
"service_provider_address": null,
"service_provider_billing_address": null,
"service_provider_billing_name": null,

(continues on next page)

16 Chapter 1. Guide

TPA Stream Developer Documentation

(continued from previous page)

"service_provider_billing_npi_number": null,
"service_provider_billing_number": null,
"service_provider_billing_phone": null,
"service_provider_npi_number": null,
"service_provider_number": null,
"status": "Processed",
"total_patient_responsibility": 69.11,
"status": "Processed",
"tpafiles": [
{

"extension": ".png",
"tpafile_id": 99999,
"url": "/claim_medical/99999/tpafile/88888"

},
{

"extension": ".pdf",
"tpafile_id": 44444,
"url": "/claim_medical/99999/tpafile/88888"

}
],
"type": {
"name": "dental",
"type_id": 2
},
"vendor_system_id": "xxxxx122344"

}
],
"has_next": true,
"has_prev": false,
"next_num": 2,
"page": 1,
"pages": 9999,
"per_page": 1,
"prev_num": 0,
"total": 9999
}

Employer Response

{
"data": [

{
"accounts": [],
"alegeus_key": null,
"can_request_reimbursements": false,
"can_use_portal": false,
"createddate": "2016-12-10T12:17:09.497104-05:00",
"datapath_key": "99999",
"easy_enroll_ssn_required": true,
"effective_date": "2016-05-01",
"email_automation": true,
"employer_id": 5555555,
"generic_key": null,
"is_demo": false,
"modifieddate": "2017-02-28T18:07:03.799519-05:00",
"name": "Dunder Mifflin Paper Company",
"onboard_field_send_reimbursement": "all",

(continues on next page)

1.3. REST API 17

TPA Stream Developer Documentation

(continued from previous page)

"onboard_url": "https://www.easyenrollment.net/enroll/ddddd",
"payers": [
{

"logo_url": "https://s3.amazonaws.com/tpastream-public/HorizonBlue-Logo-
→˓Updated-Jan15.jpg",

"name": "Horizon Blue Cross Blue Shield of New Jersey",
"payer_id": 33,
"retriever": "horizon_bluecross.HorizonBlue",
"short_name": "Horizon BCBS NJ"

}
],
"send_new_claim_emails": false,
"slug": "dddd",
"support_email": null,
"support_email_derived": "support@my-tpa.com",
"support_phone": null,
"support_phone_derived": "(800) 999-9999",
"team_primary": null,
"team_primary_id": null,
"teams": [],
"tenant": {
"logo_url": "https://s3.amazonaws.com/tpastream-public/xxxxxxx.png",
"name": "My TPA",
"tenant_id": 99999
},
"unread_count": 333,
"wex_key": null

}

],
"has_next": true,
"has_prev": false,
"next_num": 2,
"page": 1,
"pages": 66,
"per_page": 1,
"prev_num": 0,
"total": 66
}

18 Chapter 1. Guide

CHAPTER 2

Indices and tables

• genindex

• search

19

	Guide
	Getting Started
	Connecting the Health Insurance API to your Application
	Retrieving Claim Data

	TPA Stream Connect
	Client Library
	Webhooks

	REST API
	Authentication
	Security
	Generating an SSH Key
	Generating a GPG Key
	API Response Format
	API Errors
	A note about Date Ranges
	Filtering and Paging Through Results

	Indices and tables

